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An inextensible flexible filament having slight curvature and slight torsion of the shape 
in the unperturbed state is considered. The question of the uniqueness and stability of 

the solution of the smalf perturbations problem is investigated for the case when one end 
of the filament is free. A particular case of such a problem has been investigated in fl]. 

Let us start from the vector equation of dynamics of a filament 

Here E> is the density, r the radius-vector of points of the filament, T the tension, 

F external forces, .r the arc coordinate. and t the time. 

There follows from (1) for small perturbations Ar and AT: 

Here Ta (s), r,, (s) are unperturbed values of T and r. Let us expand the perturbation 
Ar in the natural axes ra, no, b,, corresponding to the shape of the filament in the 

unperturbed state Ar = A~,‘G, + Ar, no + Arab, 

Let us first assume that the shape of the filament in the unperturbed state is similar 
to a plane, i.e. the quantities ab, i ds, Pb, i h2, a%, i h’S2, dn, I 8s have the same 

order of smallness as the perturbations Ar, AT. Then muitiplying (~2) scalarly by b,, 
we obtain iFAr 

P- ai" =- 
a :Ts- as ; s 1 (3) 

Therefore, the binormal small ~rt~bations can be studied inde~~dently of the rest. 

If the shape of the filament in the initial state has slight curvature. i.e. the quantities 
(32, I’ 8s have the same order of smallness as the perturbations Ar, AT, then multi- 
plying (2) scalarly by n, and ~a, we obtain 

Consequently, all the components of the small perturbations can be studied indepen- 
dently in the last case. 

Let us first examine Eq. (3) by assuming that p.(a) and To (s) are known functions 
characterizing the unperturbed state of the filament. If the filament is fastened at two 
points (s = 0, S = I), or its motion at these points is given kinematically, then there 

exists a unique solution satisfying the initial and boundary conditions @] 

Ar, (s, 0) = cp (a), BAr, / dtlt,, = 9 (s) (5) 

Ar, (0, 4 = p1 (0, Ar3 (k 0 = ~2 0) 
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At the point S = I? let the filament have a free end 

T, /r-z = 0 (6) 

Then the second boundary condition in (5) falls away. Let us show that the uniqueness 
of the solution is assured even in this case, but under certain constraints. 

Following p], let us assume that there exist two solutions of the problem under consid- 
eration : Ar,l (s, t) and ArQ” (s, t) , and let us examine the difference 

ZJ (s, t) = Arg’ (s, t) - Ar3” (s, t) 

The function u (s, t) satisfies the homogeneous equation with additional homogeneous 

’ 
v(O,t)=O 

Let us consider the energy 

E (t) = $ 

Evidently 

j(To(gj:+p($)l}ds 

1 
dE (4 
dt= &+&$)ds 

and 1 1 1 

s 
T a’ -*ds = o as asat i 

‘Tog +) - ig + jT,$)ds 
0 0 0 

The substitution vanishes because of the boundary condition u (0, t)=O and condi- 
tion (6). Therefore 1 

dE (t) av 

s c 

8% 

dt= at p 
- - -& (To -!$)I ds = 0, 

al= 
E (t) = const 

0 

Taking the initial conditions into account, we obtain 

E (t) = E (0) = +~{To(~~+~(~jljl=yds=O (7) 

In contrast to r2], there still does not here follow from (7) that 

u (s, t) = 0 (8) 

since weaker inequalities hold than in PI, namely : 

p (s) > 0 (0 < s < Z), T, (s) > 0 (0 < s < I), T,, /,,a = 0 

And only if the solution is sought in the class of functions in which the derivative 
3~ / ds is continuous in a closed interval 0 < s < I does (8) result from (7). and 

consequently the solution is unique. 
Such a singularity of the formulated problem is associated with the fact that the ini- 

tial equation is hyperbolic in the open interval 0 < s < l but degenerates into a 
parabolic equation in the closed interval 0 < s < 1. 

Let us investigate the stability of the solution in the sense of correctness in the formu- 
lation of the problem with initial conditions. Let 

> 0 for 0 < sz” < s < Q0 < 1 

‘(‘) = 0 for sl’ <s & 1 { 

S(s) I = 0, PlW = 0, t>o 

O<S,cl 
(9) 
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Then 

Here st and ss are arclength coordinates of the leading and trailing fronts of the dis- 
continuity wave of the derivatives d2Ar, / dta and d2Arg / ds2, where, sr = sr’, 
ss z= sati at t = lJ. 

Evidently 
Ar, = 0 (s < sl, s > s2) 

From the differential equations of the characteristics 

ds, I dt = :jI (T, I p)‘/“, ds, I dt = 3-i (To / p)“” 

we find the equations of the characteristics passing through sIo and szo 

A singular solution coincident for both characteristics holds for Sr,s = C! because of 

(6). Two cases may arise: 

7”. The improper integral I 

converges for 5 --+ E, i. e. coincidence of the characteristics occurs for finite t = t*. 

Then sa - sr -+ 0 for _t 3 t* 

Rut, as follows from (10). in this case 

and because of the boundedness of p and T,,taking account of (6), we arrive at the esti- 

mate 3Ar,i& -+ -2 for S-+1 (12) \ I 
which holds for arbitrarily small initial conditions cp (S). 

The estimate (12) indicates incorrectness in the formulation of the problem in the 
closed interval 0 4 s < I, i.e. instability of the solution near the free end. 

The result formulated has been obtained under the particular initial conditions (9). 
Ilowever, by using the superposition principle for the original linear equation, and adding 
the conditions (9), which may differ from the zero conditions as little as desired, to the 
arbitrary initial conditions, we arrive at the same estimate (12). 

The problem considered has heen obtained as a result of linearizing the original phys- 
ical problem, hence, the mathematical formulation of the instability should be weakened 
as compared with the estimate (12) and is written in the form 
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3Arsldt >, 6 > 0 for cp (s) -+ 0 

A sharp rise in the velocities of points of the filament near the free end (the crack of 
a whip) is the physical manifestation of the instability remarked above. The convergence 

of the integral (11) occurs in the majority of cases of practical importance, and particu- 

larly when a homogeneous weighted filament has a straight-line unperturbed shape. 

2”. tit the improper integral (11) diverge as q -+ I, i.e. the characteristics 
coincide as t* -+ 00. Then the estimate (12) does not hold, where any perturbation 

originating in the interval 0 < s < 2 will not reach the free end in a finite time inter- 

val, and any perturbation originating at the free end will not be propagated to the remain- 

ing points of the filament. In other words, the free end becomes an isolated point at 
which the value of the function is not at all connected with the values of the function 

at the remaining points. 

This circumstance is indeed an illustration of that ambiguity in the solution which 
has been remarked in the investigation of (7). Indeed, uniqueness holds here in the apeu 
interval 0 < s < 2 but is violated in the closed interval 0 < s < 1. 

The results presented refer to small binormal perturbations described by Eq. (3). If 
the filament has slight curvature in the unperturbed state, then the small normal perturb- 

ations are described by (4), which agrees completely with (3). Therefore, all the results 

obtained relative to small binormal perturbations, go over completely into small normal 

perturbations in this case. 
The results obtained can be extended to the case when the filament moves in a resist- 

ive medium, i.e. when the external load F is a follower force. Let us set in (1) 

F = f7,r, + Fsn, + Fsb, 
and let 

Here pi is the coefficient of resistivity of the medium. Then Eq. (3) becomes 

If the improper integral in (11) converges, then t -+ t* as sr - s, -+ 0, where t* 
is a finite number. 

Hence, the estimate (12) follows from the unbounded growth of the integrand in (14) 
as s --f E . Therefore, in a resistive medium the effect of an abrupt rise in the velocities 
at the free end of a filament occurs under the same conditions as in a vacuum. An ana- 
logous result can undestandably be obtained also for Eq. (4) in the presence of resistive 
forces- 
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A class of nonstationary flows for which the nonstationary analogy may be directly used 
for calculating the hypersonic flow past a blunt body at some distance from its blunted 
part is indicated. 

It is shown that the nonstationary analogy without the introduction in the flow field 
of entropy corrections,generally, necessitates a certain special distortion of the shock 

wave shape during the transition from a nonstationary to a stationary flow. 

The known solutions of equations of the nonstationary motion of gas, and the similarity 

of the stationary and nonstationary flows, established in p-31, are often used in calcu- 
lations of hypersonic flows around blunted slender bodies. The most frequently used are 

the solutions for strong explosions [4] and those for a piston moving according to the 
power law [S]. However, with the latter method of constructing solutions the entropy at 

the surface of the body corresponding to the piston is infinite, and in the neighborhood 

of this surface the solution looses its physical meaning. 

This shortcoming of the theory has been corrected in [S-lo] in which the inverse 

problem, i. e. that of finding a stationary flow corresponding to a shock, and obtained 
from the initial nonstationary solution by the nonstationary analogy (by the substitution 

1c = z&J) . The method of introducing the so-called entropy corrections to the shape 
of the body and to flow parameters derived directly from nonstationary analogy was 
proposed in those papers. It was shown in [9] that, in particular, in the case of a strong 

explosion such corrections reduce to a modification of only the shape of the body, whose 
surface must be assumed to follow the streamline corresponding to the trajectory of that 

particle of the nonstationary flow whose entropy equals that obtaining downstream of a 
normal shock. The complete class of flows having this property will be indicated in the 
following. The analysis of other flows in this formulation of the inverse problem is made 
much more difficult by the necessity of introducing corrections not only to the shape of 
the body but, also, to the flow field [lo]. With the aim of determining a certain class 
of stationary flows around blunt bodies, in this paper we propose a different method of 

construction (of solutions) which avoids these difficulties. The underlying idea of this 
method is to introduce corrections to the shape of the bow shock derived by nonstation- 
ary analogy, and not to the flow field. The shape of this shock is selected on the basis 
of the condition of complete congruence of the fields of stationary and nonstationary 


